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Time-dependent models of semiconductor devices are readily formulated as a system 
of three partial-differential equations in three variables. Each of the equations is linear 
and well posed for one of the variables; however, if the equations are solved sequentially 
at each step, a nonlinear instability arises from the coupling terms, unless prohibitively 
small time steps are used. Three methods are proposed for avoiding such an instability. 
Convergence and stability results are obtained for each method, and the relative merits 
of each method are discussed from a practical viewpoint. An example of a computation 
using one of these methods is included. 

I. INTRODUCTION 

We consider numerical methods for the system 

Ut = Au - v . (uV$h), (I.la) 
vt = Au + V - (vV#), @lb) 

K~I)=u-v-f, (~3 t) E D x (0, T), (1.2) 
Bl(Yv = M4 $1 = Bdv, $4 = 0, (x, t) E 80 x (0, 2-j; (1.3) 

u(*, 0), v(*, 0) specified. In (l.l)-(1.3), U, v, # are dependent variables, K is a positive 
constant, and f is a given function of x. D is a bounded domain in RN. The well 
posedness of this problem depends on U, v being nonnegative [8], and this is 
assumed true of the initial data. 

This problem arises in the theory of semiconductor devices; u and v are the local 
densities of electrons (negatively charged) and holes (positively charged), which 
move by diffusion and by drift in the self-consistent electric field [14]. Equations 
(1.1) are continuity equations for u, v. Equation (1.2) is a Poisson equation, with 
$ the electrostatic potential, K the dielectric constant of the material, and f the 
density of stationary charged ions. B, , B, are linear boundary conditions on u, v, 
respectively; they may depend on #, however, as is the case if the normal flux 
of particles is specified on part of the boundary. Bl is a linear boundary condition 
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on $. In this context, a simple but interesting example of the domain and boundary 
conditions is for D to be a rectangle in R2, with u, v, and # specified on two opposite 
sides and their normal derivatives required to vanish on the other two. All of our 
results will be consistent with a domain and boundary conditions of this form. 
However, as several problems of engineering interest dilfer only in the specifics of 
the boundary conditions, we shall leave the precise form of the boundary conditions 
unspecified, stating our specific requirements at each step. 

Viewed as such a model, several simplifying assumptions have been incorporated 
into the system (l.l)-(1.2). In particular, we have neglected recombination (anni- 
hilation of electron-hole pairs) because this process in semiconductors is very 
slow compared with the time scales, which will be of interest below [ll]. 

The discretization of (1.1~(1.3) with respect to the space variables posses no 
particular problem. Either finite-difference or finite-element methods can be used, 
and substantial information of both experimental and analytical form exists for 
the associated stationary problem [5, 7, 121. For this reason and for notational 
simplicity, we shall discuss semidiscrete (discrete in time but not in space) approxi- 
mations below. 

In the case of one-space dimension, the solution of a nonlinear discrete system 
at each time step is feasible, and several numerical investigations have been per- 
formed in this manner [I, 4, 61. A stability proof for this procedure is given in [8]. 
For higher-space dimensions, we adopt the following philosophy, which is based 
on the interpretation of this system as an engineering model: First-order accuracy 
in the time step (h) is sufficient, but we are unwilling to solve nonlinear systems at 
each time step. In fact, we wish to limit the computation at each time step to the 
solution of three separate linear systems, each corresponding to the discretization 
of one of the three Eqs. (l.la), (l.lb) and (1.2). 

The trouble with this approach is that the straightforward linearization of the 
system (l.l)-(1.2) is unstable, unless prohibitively small time steps are used. To 
see this, let u, be a function of x, x E D, approximating u(., &J, t, = nh, with 
v, and 4, similarly. If the system (1. I)-(1.3) is linearized in the obvious manner 
and backward time differencing is used, we obtain 

u, - u,pl = h Au, - hV . (u,V#,J, 
v, - v,-~ = h Av, + hV * (vnV&J, 

K AI/J,, = u, - v, -J: 

From (1.6), substituting from (1.4) and (1.5), we get 

(1.4) 
(1.5) 
(1.6) 

~&I - K A$,-, = (u, - G-J - (vn - ~-1) 
= h Au, - hV . (u, V#m-1) - h Av, - hV . (v, V&-a 
= h&a - vn) - hV . ((u, + ~3 V&a-1) 

(1 7) 

= h A2#n - hV ’ ((u, + v3 V+n-1) + h As, 
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as an evolution equation satisfied by #la . From (1.7) it is apparent that unless h 
is of the order of the minimum value of the local “dielectric relaxation time” 
T = K/(2.& + u,), instability is likely. In fact, this instability has been observed, 
and for a special case, we shall display the unstable modes explicitly below. 

Such a limitation on the time step is considered unacceptable. In practice, for 
present day silicon devices we are interested in values of T - 1O-8-1O-1o sec. As 
a physical model of such a device, the system (1. I)-(1.2) may be useful down to 
time scales of 10-12-10-13 set, at which point the acceleration time for mobile 
carriers becomes important [l 11. The values of 7, however, easily can be as small as 
10-16-10-17 set, depending on the particular problem. 

Below, we discuss three methods, based on different treatment of the Poisson 
equation (1.2), for circumventing this difficulty. Each method has advantages 
and disadvantages with respect to the others, and the results of our analysis will 
require interpretation in choosing a method for a specific problem of this type. 
For example, asymptotic convergence results are obtained in Section 3, but may 
not be very important, since computations with h small compared with 7 are not 
anticipated in general, even as test cases. Stability of the linearized problem at 
equilibrium is discussed in Section 4. In the special case where the equilibrium 
carrier densities are constants, the linearized problem can be fully characterized 
[lo], and our discretization schemes are compared with these results in Section 5. 
An example of such a computation is presented in Section 6. The relative merits 
of the various schemes are discussed in Section 7. 

II. THREE POSSIBLE COMPUTATION SCHEMES 

It is useful to replace the variables U, ZI, by 5, = ue-&, cv = ve*; the continuity 
equations assume self-adjoint form in these variables. 

Our first method is to replace &-r by #, in the right side of (1.7), and use this 
relation instead of (1.2) in the original system. An additional linear boundary 
condition for #, denoted by 8, is also required. Then, we find &, , c,,, , [**la by 
successively solving 

Kdh - K Ah-1 = hK A”& - hV * ((k,,-1e6n-1 + Sn,n-le-‘n-l) V&J + h Af 

Bl(A) = 4hz) = 0, x E aD; x E D; (2.1) 

5 u.ne *,, - 5u,n-le*n-1 = hV * (e*” Vt;,,,), x E D; 
(2.2) 

B2G,neen, $4 = 0, x E ao; 

5 v.ne -hi _ (u,n-le-*n-l = hV * (e-*” Vc,,,), x E D; 
(2.3) 

B3Gv.ne-*n, +,I = 0, x E aD. 
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In such a computation, the frrst step requires the solution of a fourth-order linear 
elliptic system, but the last two steps presumably can be reduced to a sequence of 
one-dimensional problems by the method of fractional steps [2]. 

In the second method we discuss, the Poisson equation (1.2) is retained, but a 
stabilizing term is added, as done by Gummel [5] for the stationary problem. We 
obtain the following equation for z,/J~ : 

K Ah - (id&‘n-l + 5,,,4+-9(h - &-3 
= i&n-led”-1 - Sv,n-le-Q*-’ - .L x E D, (2.4) 

&(&J = 0, XEaD; 

Eqs. (2.2) and (2.3) are subsequently solved for cU,n , c,,, . This procedure requires 
no additional boundary conditions, and also requires the solution of only one 
N-dimensional linear elliptic system at each time step. In this case, however, the 
system is second order, self-adjoint, and strongly diagonally dominant, so that 
very fast iterative methods are applicable [3, 131. 

Our third method involves an additional approximation in the system (1.1) 
and (1.2), considered as a model of a semiconductor. In semiconductors it is 
frequently true that regions in which the carrier densities (U or u or both) are large 
are “charge neutral” in the sense that K / A# I is very small compared with the 
larger of U, o. In such regions, we consider the system obtained by replacing the 
dielectric constant K by zero, and dropping one of the boundary condition require- 
ments [9]. We also assume that the original boundary conditions are consistent 
with charge neutrality, so that this is justified on physical grounds. 

We anticipate that in practice, the region D will be divided into two regions, 
one in which the charge neutral approximation is physically justified, and one in 
which u + u is sufficiently small that direct methods such as that described by 
(1.4)-(1.6) can be used without unreasonable restrictions on h. In the following, 
however, it is assumed for simplicity that the charge neutral approximation is 
made throughout the region D. Two schemes for implementing the charge neutral 
method are suggested: Drop the boundary condition B1, solve a quadratic 
equation at each point for #n , 

5u.n-le*n - iLd-*n = f, P-5) 

and find <,,, from (2.2) and SW,* from (2.3); alternatively, drop one of the other 
boundary conditions, say B3, find & from 

V - ((5u.n-le’n-1 + Su.n-le-*n-l> V&J = AL x E D, 

M&J = 0, x E ao; (2.6) 

then find cr.,, from (2.2) and C,,, from a statement of charge neutrality, 

5 ..,e *n - (u,ne-*n -f = 0, x E D. (2.7) 
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III. CONVERGENCE AS h-0 

In this section, we obtain asymptotic convergence results for the three methods 
presented above, assuming that a sufficiently smooth solution exists in each case. 
We will also assume that the number of space dimensions N < 3, and make some 
assumptions about the boundary conditions consistent with those described in 
the introduction. 

Let ( , ) denote the L, scalar product over D, and I/ . jl the L,-norm. We will 
assume that for functions g(x), satisfying the homogeneous form of one of the 
three boundary conditions, BI , Bz , B3 , 

II g /I1 = (JD I Vg I2 dx)“’ and /I g /I2 = II 4 II, 

are equivalent to the usual H1 and H2 norms over D; for two such functions, g, 
8 we further assume that (dg, g”) = SD Vg . Vi dx, i.e., the associated boundary 
integral vanishes. 

Let t, = nh, n = 0, 1, 2 ,... be the discrete time points, although the use of 
uniform steps is not necessary for our results. We use the following notation: 
u, = Lne% u, = &,ne-&n are the approximate values of the carrier densities; 
? = Ln - LA., GJ, pn = L., - L(-, GA CL = *n - 9(*, 42, w, = un - UC., fn), 

- v(*, t,), are the error functions. We use c, E below for large and small 
~sYtiZ) generic constants, respectively. 

The continuity equations associated with each method can be analyzed using 
straightforward energy inequalities. We use the following two lemmas: 

LEMMA 1. Suppose i,,, E HI(D) and &, E H2(D) satisfy (2.2) weakly, then, for 
h suficiently small, 

II wn II2 + h It wn II: G 11 + ch + G(I/ L 112) h II t, IlzlIll w,-1 II2 + ch II &a II: + ch31, 
(3.1) 

where G(s) is a continuous positive generic function. 

Proof. Comparing (2.2) with (l.la), we have 

w - n w,-~ = hV . (eGL, V{,,,) - hV * (e’(“tn) V<,(., t,)) + O(h’) 

= hV . (eQnV(e-6*wn + e’(‘*tn’-SnLJ*, tJ) 
(3.2) 

- hV * (e”“tn) V<,(*, f,J) + O(h2) 

=hAw,-hVw;V#,-h wn Ah + hV - (UC., &a) V&d + O(h2). 
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Taking the scalar product of (3.2) with w, gives 

II wn II2 - 6% > we3 = --h II W” 11; - %%a, VW, * v&J - h(W,2, A&&) 

- h(u(*, GA VW, * V&J + O(h2) II n’, II, 

so that 

11 w, II2 < 11 w,-1 II2 - 2h II w, II: + 4 II wn III (II 5, III + II wn II> 

- h(wn , VW, . V&J - hb2, &J + W3 II wn II 

< 11 w,..el II2 - (2 - 4 h II w,, II; + ch(ll 5n II: + II wn 11’1 

+ ch 11 wn 111 II w, lb, II En llwll + ch II wn II:& II tn II2 + ch2 II wn II 

< 11 w,.ml II2 - (2 - 4 h II wn II; + 4l 5, II: + II wn 11’1 

+ ch II wn II”,, (II B, II2 + II 5, Il$4 + ch2 II wn IL (3.3) 

Since N < 3, II . I~,I < c II . /I2 and II * II4 < E II * IL + c(e) II * II; using these 
estimates in (3.3) gives 

II w, II2 < II ~a-1 II2 - (2 - 4 h II wn II; + 41 I, II”1 + II w, 11’) 

+ G(ll tLll2) h II w, II2 (II tn II2 + II 5, II;) + ch2 II w, II, 

from which (3.1) follows easily, assuming h sufficiently small. 

LEMMA 2. Suppose c,,,, E Hz(D) and $, E Ha(D) satisfy (2.2) strongly, then, for 
suflciently small h, 

II w, II; + h II w, II; < [1 + ch + WI 5, ll2> h II 6, ll~1[ll w,-.1 II: + ch II 5, II; + chal. 
(3.4) 

The proof is similar to that of Lemma 1, except that we take the scalar product 
of (3.2) with dw, . We also use II . [IL, < E II * II2 + C(E) II . Ill, which again is 
valid since N < 3. 

When c,,, is determined from (2.3), similar estimates hold for (/ nin 11. 
For the first method proposed, an energy inequality also can be obtained for 

the error in 4. 

LEMMA 3. Suppose $,, E P(D), u, E I-P(D), v, E W(D) satisfy (2.1). Suppose 
also that 8(#(*, t,,)) = 0, and that the homogeneous form of the boundary conditions 
&(hJ = &$4J = 0 is such that gn = $,, - $(e, t,,) satisfies -(At,, A”[-) = 
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JD I V 4% I2 dx = II &n II; > ~ndll5,h is equivalent to the usual H3 norm for functions 
satisfying such boundary conditions. Then, for h suficiently small, 

< [I + ch + ch I/ w,-1 + L, 11f1[115,-, II; + ch I/ wn-1 + %-I II2 + ch31. (3.5) 

Remark. This requirement on the boundary conditions is satisfied, for example, 
if z+G and d # are specified on all or part of aB and the normal derivatives of 1+4 and 
A$ are specified on the remainder. 

Proof. Comparing (2.1) with (1.1) and (1.2), we obtain 

K&L - K A&+, = hK A2512 - hV . ((u,-, + u,-~) V$,) 

+ hV * (M-, tn) + v(*, tn)) V#<., tn>> + W) 

= hK A25, - hV * ((IV,-, + ti;,-3 I’#,) 
(3.6) 

- hV . W., tn) + v(*, tn>) V&J + W) 

as an evolution equation satisfied by 5. Taking the scalar product with 06, gives 

II 5, II,” d Ii L1 II: - (2 - 6) h II fn II”, 
+ ch Ilh-1 + %-,) I 04, I II2 + ch II 5, II: + ch2 II 6, II 

G II L-1 II; - (2 - 4 h II 5n II: + ch II wn-1 + f&z-, II2 
+ ch II wn-1 + Gz-, l12L4 I/ 5,ll?+y + ch II 6, II; + ch3 

d II L-1 II; - h II 6, II: + ch II w,-1 + G-I II2 
+ ch /I w,-1 + G,-, II; II 5, II; + ch II 5, II + ch3, 

from which (3.5) follows. The convergence of the first method proposed follows 
from Lemmas 2 and 3. 

THEOREM 1. Suppose c,,, E H2(D), &,,, E H2(D), &E H3(D) are determinedfrom 
(2.1~(2.3), and suppose the extra boundary condition f) satisjies the requirements 
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of Lemma 3. Suppose further that the initial approximations satisfy II w. II1 + 
118, II1 + 11 LJ, II2 = O(h). Let t, = nh be fixed as h -+ 0; then, 

II u?z - 4.7 tn)lL + II v, - 4.9 hL>lll + II L,n - Cd., GL)llI + II L,n - Ld., t,ll, 
+ II #n - JR., tn>llz < ck (3.7) 

and 

II % - UC.3 fnh + II 0, - 4.3 tn>llz + II L&n - L(~, tn>llz 
+ II L,, - LA., tnh + II #n - tic., tnh < cw2. (3.8) 

Proof. Set 

En = II wn II; + II %z II: + II En II; + h(ll wn II; + II f&z II”, + II &a 11% 

it follows from (3.4) and (3.5) that E, satisfies 

En < (1 + ch + d&z-dW--1M.L1 + ch31. 

Since El = O(h2) by hypothesis and an application of (3.4) and (3.5), we have 
E, = O(h2), from which (3.7) and (3.8) follows. 

The asympptotic convergence of the second method depends on Lemma 1 and 
the following estimate for II [, II2 . 

LEMMA 4. Suppose #,, E H2(D) is determined by (2.4), and suppose that for each 
nonnegative integer m < n - 1, u,,, + v, is uniformly positive and bounded in D. 
Then 

II 6% II2 < G(My II ui + vi IIL, , Mj= II&c + vd-’ II&P + M,““<II wm II + II f&n IIN, 

where the integers j, k, and m are between 0 and n - 1. 
(3.9) 

Proof. Comparing (2.4) with (1.2) we obtain 

K ‘@, = wn-1 + %I + h-1 + vn-I)& - h-1 + O(4); (3.10) 

collecting the 5, terms, multiplying (3.10) by (u,-~ + v,-,)-~/~ and squaring, 
we obtain 

K2((U,-1 + &+l)-l, (&z)~) + K 11 6, it + (%-I + %-I 3 ‘&a21 

= jl(u,el + v,-~)~‘~ (L1 + O(h)) - (u,-, + v,-,)-~‘~ (w-1 + &-dll” 

d (1 + #.Ll + %-A EL> 
(3.11) 

+ HE, II urn-1 + vn-I IL, > II(u,-1 + ZLJ-~ lL,W2 + II wm-1 II2 + II wn-I II”). 
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In (3.11), we choose E sufficiently small, depending on u,-~ + u,-, , so that the 
left side is >(I + ~E)((u,-~ + unel), f,“); it then follows that 

((~-1 + vn-11, t,“> < G(My II uj + vj Ih, 7 Mfx ll(ue + VP IIL,) 

x W + M~xCll wm II2 + II 2;, 11% (3.12) 

where the integers j, k, and me[O, n - 11. The result (3.9) then follows from (3.11) 
and (3.12). 

THEXXEM 2. Suppose C,,, , C,,,, E HI(D) n L,(D), I+& E H2(D) satisfy (2.2), 
(2.3), and (2.4), with the extra provision that the factor (u,-, + v,-J occurring in 
the left side of (2.4) is restricted to the range [E, c,] uniformly in D and independent 
of h, for some positive E. Suppose that /I &, 1) + // w0 II + 1) w,, II = O(h). Let t, = nh 
be fixed as h -+ 0; then, 

II un - UC’, fn)ll + II &I - UC., GJll + II 5,., - u., 4Jll 

+ II Ln - LA., tn)ll + II #,a - #(., t, II2 G ch (3.13) 
and 

II %I - u(*, tdll + II v, - v(., tdlll d chY2. (3.14) 

Proof: With this restriction on the stabilizing term in (2.4), (3.9) may be simpli- 
fied to 

II 6, II2 < 0 + M,““<ll wm II + II %a II) 

and the conclusion is immediate from Lemma 1. 
The use of such a restriction on the stabilizing term can be avoided if smoother 

approximating functions are used. 

THEOREM 3. The conclusions of Theorem 1 remain valid if<,,, , c,,,,, , & E H2(D) 
are determined from (2.2), (2.3), and (2.4), and the inituE data satisfy j] w,, ]I1 + 
II wo IL + II to II = O(h). 

Proof We use Lemmas 2 and 4; setting 

& = $2 [II wm II: + II f&n II; + Ml wn II: + II z;, ll31; 

(3.9) becomes 

since ]I . II2 estimates II * IIL, in three dimensions, and the results follow from (3.1). 
Finally, for the charge neutral method, we have the following: 
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THEOREM 4. SuPPOse t-w., , #la, ‘&,,,a E Hz(D) are determined from (2.2), (2.6), 
and (2.7), respectively. Suppose a smooth charge neutral solution with u + v uniformly 
positive in D x [0, Tj exists, and that the initial data satisfie u,, + f = v, , 
u, + v,, > E > 0 uniformZy in D and II w,, /II + h 11 w,, \I2 = O(h). If t, = nh is 
fixed as h -+ 0, then (3.7) holds and 

II un - UC., fn)llz + II 0% - 4.7 GJl2 + II LA.?2 - L(., hJll2 

+ II Lb, - Cd-, tn)lle d a”. (3.15) 

Proof. We rewrite (2.6) in the form 

v * @n-l + f) v&J = df, x E D, B1(&) = 0, x E aD, (3.16) 

using (2.7) at tnel . If a smooth charge neutral solution exists, I,$ satisfies 

v * Kw-, t?l> + f) v$4-9 &I)) = 4 x E D, B,(#(., t,,)) = 0, x E aD, (3.17) 

so that 5, = & - $(*, tn) satisfies 

v * ((24-1 +f) v&a) = -2V * (w,-,V#(*, tn)) + O(h), x E D, (3.18) 

and the homogeneous form of B1 . We assume u,-~ + v,-~ = 2~4,,-~ + f is uni- 
formly positive in D; then, (3.18) has a solution &eH”(D) if w, E W(D), and 

II 5,111 < G(ll w,-1 ll~,)(ll ~a-1 II + 4. (3.19) 

Writing the left side of (3.18) as (24, + f) dt, + V(2u,-, + f) * V&, and 
using (3.19) we obtain 

/I 5, II2 < G(ll w,-1 ll~J[ll wn-1 111 + h + II 8, III + II wn-I Ilw,l II 4, lb,4 
< G(ll w,-1 ll2>[ll wn-1 111 + h + II wn-I II2 (e II t% II2 + 44 II 5, 1131 
G WI w,-1 ll2)[ll wn-1 111 + h + II wn-I II2 II 6, Ii11 

< WI wn--l ll2)(ll we-1 111 + 4. 

(3.20) 

Setting En = II w, II: + h II w, II: , and noting that 8, = -w, for the charge 
neutral problem, (3.7) and (3.15) follow from (3.20) and Lemma 2. Since the second 
space derivatives of u, , v, are converging to those of u(*, t,), v(., t,J, the assumption 
of uniformly positive U, + v, is justified. 
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IV. THE LINEARIZED PROBLEM 

In this and the next section, we assume that the boundary conditions are con- 
sistent with a stationary solution of the system (l.l)-(1.3), of the form [8] 

i,(x) = {&II) = 1, U(X, t) = a(x) = edJa), U(X, t) = b(x) = eCtiJ2) (4 1) 

’ K d#e = e*e - e-*8 -f, x E D, B1(#,) = 0, x E 8D. 

The eigenvalues of the system (l.l)-(1.3), linearized at the stationary solution, 
are known to be real and negative. In this section, we examine the discrete eigen- 
values for two of our methods. We seek discrete solutions of the form t, = nh, 

4% t,) = a@)(1 + zn(w(x) - 8(x)), (4.2) 

4x, 4J = b(x)(l + z”(#(x) - 4x)), (4.3) 

#Cx, 4%) = $hix) + ZWX), (4.4) 

where z is the discrete (complex) eigenvalue and 0, 4, w are complex valued and 
sufficiently small that it suffices to retain only first-order terms. Hereafter, we use 
( , ) for the complex scalar product, and introduce the additional notation 

similarly for the other variables. We shall assume that the boundary conditions are 
such that if g is any of the three small quantities 0, 4, W, then (1 g 11; = -(g, Ag), 
and II g II G c llg IL . 

The linearized form of (2.2), and (2.3) is 

zv . (de) = u(~ - l)(e - w)/h (4.5) 

ZV . (b 04) = b(z - l)(c$ - w)/h; (4.6) 

we will discuss two cases: that in which 1 is determined from (2.4), the linearized 
form of which is 

KZ~W-(a+b)zw = -ue-b+, (4.7) 

and the charge neutral case with & determined by (2.5), which becomes 

Z(U + b) w = a8 + b& (4.8) 

THEOREM 5. Assuming hpositive, the system (4.3, (4.6), and (4.7) has nontrivial 
solutions only if / z I < 1 and Re(z) > 0. 
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Proof. We take the scalar products of (4.5) with 0, of (4.6) with 4, and of 
(4.7) with w; the terms involving (~0, w) and (b+, w) can be eliminated, obtaining 

fc.2 II OJ IIf + 2 II w IIL = II 0 II? + Ii d it + (wz - I))(11 0 lIta + II 4 ll21.d (4.9) 

If o = 0, then z E (0, 1) is immediate from (4.9). If w + 0, then (4.9) is a 
quadratic equation for z, of the form 

PzZ - P.2 - (Q + hR) z + Q = 0, 

p = K 11 OJ 11; + 11 W li:+b , 

Q = II 0 II”, + II d II: , 
R = II 0 llta + II 4 llh . 

(4.10) 

There are no nontrivial solutions with Q and R equal to zero. With, h, P, Q, R 
all positive, it follows from (4.10) that either z is real and positive, or P = Q + hR. 
If z is real, since z = 1 is impossible from (4.5) and (4.6), it suffices to show that 
z > 1 is impossible. Otherwise, the scalar product of (4.5) with 0 can be written 

@zl(z - 1)) II 0 lIta + I/ 8 II”, = (a@, ~1 G (1/4(/l 0 II”, + II w II:, 

and it follows that // 8 Ila < II o Ila. We get II I$ Ilb < 11 o Ilb, similarly, from (4.6), 
and thus, Q < P. But the scalar product of (4.7) with w gives 

ZP = (w, atI + b+) 

G *(II w II: + II 0 II: + II w II: + II 4 13 
G W’ + PI, 

(4.11) 

which implies P < Q if z > 1. 
If P = Q + hR and z is complex, (4.11) may be written 

P+Q lzl<2p= Q + hRl2 < 1 
Q+hR . 

The conclusion Re(z) > 0 follows in this case from considering the real part 
of (4.10) as a quadratic equation for Re(z). 

For the charge neutral method, we have the following: 

THEOREM 6. Assuming h positive, the system (4.5, 4.6, 4.8) has nontrivial 
solutions only if I z I < 1 and Re(z) > 0. 

Proof. Equation (4.8) is obtained by setting K = 0 in (4.7). The proof of 
Theorem 5 remains valid if we set K = 0. 

581/21/1-3 
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V. THE CASE OF CONSTANT DOPING 

A mathematically interesting special case occurs when f and #, are constant in D. 
The solution of (l.l)-(1.3) can be interpreted physically in this case: First, the 
magnitude of the electric field, / V# /, decays rapidly, in a time scale of order T, 
by the drift of mobile carriers; then, the carriers diffuse toward the stationary 
(constant) distributions [IO]. Near the stationary solution, drift and diffusion 
mechanisms are uncoupled, in the sense that the eigenfunctions are divided into 
two classes: drift modes, with w & 0 and associated time constants of order 
r = ~/(a + b), and diffusion modes, with w = 0 and time constants independent 
of K. 

In this section, we compare these results for the continuous system (l.l)-(1.3) 
to the corresponding results for our proposed discrete methods. In this case, we 
are also able to display explicitly the instability associated with direct methods 
such as ( 1.4)-( 1.6). 

We linearize the equations as in Section 4; the continuity equations (2.2) and 
(2.3), or (4.5) and (4.6) become 

z de = ((z - 1)//z)@ - w), (5.1) 

z A$b = ((z - I)/h)(cj - w). (5.2) 

The linearization of (2.1) gives 

K((Z - 1)/h) dW = KZ d2W - (a + b) Z h, (5.3) 

so that (5.1)-(5.3) describes our first method. For the second method, we have 
(5.1), (5.2), and (4.7); for the two forms of the charge neutral method we have 
(5.1) (5.2), and (4.8), or (5.1) or (5.2) with w 3 0, respectively (since the lineari- 
zation of (2.6) gives dw = 0). In the following, we denote by h(B) an arbitrary 
element of o(d; 19), the discrete spectrum of d in P(D) with the boundary con- 
ditions for 0, which are assumed to be homogeneous and such that a(d ; @(-co, 0). 
Other variables are denoted similarly. 

The explicit form of (5.3) makes the analysis of the system (5.1)-(5.3) trivial, 
and we have the following: 

THEOREM 7. Suppose that the homogeneous form of the boundary conditions 
is such that (w, AU) < 0 and (w, A2w) > 0. Then, the nontrivial solutions of (5.1)- 
(5.3) occur only for real positive z and are of two forms: drift modes, with w + 0 
and z < (1 + h/7)-l; and d@sion modes, with w = 0 and z = (1 - hX(@-l 
or z = (1 - hh(+))-l. 
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THEOREM 8. Suppose that the homogeneous form of the boundary conditions 
is such that a(A; Aw) is a discrete point set in (- 00, 0); then, the drift mode solutions 
of (5.1)-(5.3) correspond to z = (1 + h/T - hX(Aw))-I. 

For our second method, we have a somewhat weaker result: 

THEOREM 9. Suppose that the homogeneous form of the boundary conditions 
is such that (w, Aw) < 0 and (0, A2w) 3 0. Then, the real values of z for which 
(4.7), (5.1), (5.2) h as a nontrivial solution are as in Theorem 7, and the complex 
values satisfy / z ( < (1 + ch)-1/2. 

Proof. In view of Theorem 7, it suffices to consider the case w + 0. We can 
combine (4.7), (5.1), and (5.2) into a fourth-order equation for w, obtaining 

h2rcz2 A2w - hz(h(a + b) z + K(Z - 1)) Aw + (a + b)(z - 1)2 o = 0; (5.4) 

taking the scalar product with w and setting s = (z/(z - 1)) = 01 + i/3, we obtain 

h2[n(m, A20) + (a + b) II w IIf] s2 + hrc II o II,” s + (a + b) II w II2 = 0. (5.5) 

For z real, it follows from (5.4) that h(a + b) z + K(Z - 1) < 0, so 
z < (1 + h/7)-l. For z complex, solving (5.5) as a quadratic equation for s, we 
find -(T/h) < 01 < 0, /3” < I/ o ll/(h j\ w &) <c/h. Since z = s/(s - 1), our results 
follow. 

We get only diffusion modes with z = (1 - hh(8))-l, or z = (1 - hh(4))-l for the 
charge neutral method (2.2), (2.6), and (2.7); this follows immediately from setting 
K = 0 in (5.3). The other charge neutral method, (2.2), (2.3), and (2.5), is described 
by (4.8) (5.1) and (5.2), with a, b constant in this case, and we have the following: 

THEOREM 10. The real values of zfor which (4.8), (5.1), and (5.2) has a nontrivial 
solution correspond to d$usion modes with z = (1 - hh(e))-l or z = (1 - hh(rj))-l; 
the complex values satisfy / z 1 < (1 + ch)-1/2. 

Proof. Combining (4.8) (5.1) and (5.2) we obtain hz2 Aw = (z - 1)2 w, which 
has nontrivial solutions only for s2 = - jJ w Jj2/h )/ w 11;); the proof proceeds as 
for Theorem 9. 

Finally, we display the unstable modes associated with a direct method; for 
simplicity, we consider the method obtained by dropping the stabilizing term 
from (2.4) and finding I,&, from 

K A#, = {u,n-Ie’n-l - ~v,n-le-*9-1 - f, x E D, PI(&) = 0, x E oD. (5.6) 

The linearized form of (5.6) is 

KZ Aw - (a $ b) w = -a0 - b+; (5.7) 
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combining (5. I), (5.2), and (5.7) we get an equation similar to (5.4) for w, 

ZK d2W - (a + b + K(Z - 1)/h)) dW = 0. (5.8) 

Thus, if the boundary conditions are such that a@; dw) is not empty, for any 
X E o(d; L~uJ), there exists a nontrivial solution of (5.1), (5.2), and (5.7) with 
with z = (1 - h/7)/(1 - Xh), which requires h = O(T) for ( z I < 1. 

VI. A SAMPLE COMPUTATION 

The geometry and boundary conditions adopted for a sample computation are 
taken from a simple model of the “insulated-gate field-effect transistor” (IGFET), 
as illustrated in Fig. 1. (In Fig. 1, VO is the “built-in” source potential, and V&t), 

FIG. I. Device model and boundary conditions. 

v,(t) are the applied voltages between gate and source and between drain and 
source, respectively, as functions of time.) This device has an “ohmic contact” 
in each of the separated source and drain regions, which are characterized by large 
positive f, u M f, u negligible. The intermediate region is characterized by large 
negative f, and (as shown in Fig. 1) for sufficiently large negative JJ, by u w -f, 
u negligible. A third electrical contact is made to a metallic “gate,” which is 
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insulated from the semiconductor material by a thin nonconducting layer, typically 
of silicon dioxide. A positive voltage applied to the gate, however causes the 
formation of a thin “inversion layer” of electrons under the oxide interface, 
allowing current to flow between the source and drain, controlled by the voltages 
applied to the gate and drain. Although this is an important device in semicon- 
ductor engineering, its transient behavior is not well understood. 

Because of the inversion layer, the charge neutral approximation is not useful 
in the treatment of this device. The method described by Eqs. (2.2)-(2.4) was 
used. A rectangular mesh was employed in the space coordinates, uniform in 
the x direction, with geometrically decreasing spaces with increasing y. (Non- 
uniform spacing is required in the y direction, in this device, to resolve the thin 
inversion layer under the oxide interface.) The standard five-point approximation 
to (2.4) was used, with the method of [3] for its approximate inversion at each 
time step. Equations (2.2) and (2.3) were treated by the method of fractional steps; 
within each half-step, a three-point discretization was used that admits inter- 
pretation and analysis as a finite-element method [7, 121. 

The results of a typical calculation are shown in Fig. 2, in which the applied 

FIG. 2. Applied voltages and current flow. 

gate and drain voltages are plotted together with the current flow (in normalized 
units) at the source, gate, and substrate contacts. The gate current is displacement 
current, and our results indicate that to first approximation, geometric capacitance 
accounts for the gate current, with the inversion layer considered as coupled to 
the source. 
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VI. DISCUSSION AND SUMMARY 

In the preceding, we have obtained some analytical results for two general 
methods for approximately solving the problem (l.l)-(1.3). We have also 
considered two forms of a charge neutral method, which correspond essentially 
to setting K = 0 in the two general methods. 

A general statement of which method “works best” will not be attempted here; 
we will simply itemize the relative merits of each method. In our discussion, the 
importance of the asymptotic convergence results is discounted in favor of bounds 
independent of h on the computed solutions. Boundedness of the computed 
solutions is clearly necessary, but we cannot expect h to be small compared with T; 
in fact, convergence as h + 0 is readily established for the direct methods, which 
we found unsatisfactory. 

In this context, the advantage of our first method (2.1), (2.2), and (2.3) might 
be summarized as follows: 

(1) This method admits a bound (independent of h) for the magnitude of 
the electric field, as may be seen by taking the scalar product of (2.1) with 9, . 

(2) In the special case of a constant equilibrium potential, this discrete 
method accurately reflects spectral properties of the continuous system. 

(3) Higher space derivatives of the dependent variables are controlled by this 
method. 

(4) An energy inequality exists for the error in the electrostatic potential 
for this method. 

Some disadvantages of this method are the following: 

(1) A relatively complicated equation for the electrostatic potential has to 
be solved at each step. 

(2) An extra boundary condition for the electrostatic potential is required. 
(3) The generalization of this method to the case of unequal carrier mobilities 

is awkward. 
(4) If the space discretization is to be effected by a finite-element method 

consistent with our convergence proof, relatively smooth elements are required. 

For the second general method (2.2), (2.3), and (2.4) we have the following: 

(1) A strong local stability result (Theorem 5) holds for this method. 
(2) The residual error associated with the Poisson equation, given by 

KA’& - u, + v, +f, is readily monitored and controlled in this method, by 
reducing the time step as necessary. 
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(3) A space discretization of this method consistent with the convergence 
proof could be made in such a way that the discrete form of (2.2) and (2.3) will 
satisfy a maximum-minimum principle, for example by using piecewise linear 
elements for U, D. Such a property would assure the uniform positivity of the 
computed carrier densities. 

(4) As mentioned in Section 2, the form of the Poisson equation (2.4) is 
such that it is easily inverted at each step. 

The two forms of the charge neutral method exhibit similar properties. In each 
case they allow a substantially simpler computation scheme at the expense of some 
of the theory. A more serious limitation on the charge neutral method, in our 
opinion, is that the approximation of charge neutrality is not physically justified 
in some problems of current engineering interest, as in the sample computation 
discussed in Section 6. 
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